Standardization, sharing, and ownership: key areas of concern for Great Lakes database integration

IAGLR
May 25-29, 2015
Burlington, Vermont

Norine E. Dobiesz
Workshop process

• Roundtable format
 – Focus on Great Lakes data integration issues
 – Participation from Lake Victoria and the Laurentian Great Lakes

• Created a list of obstacles
 – Challenges, issues, roadblocks, concerns

• Group into areas of concern
 – Which areas present the “biggest” obstacle?
Areas of concern

• Data
 – Types of data
 – Standardization
 – Data gaps
 – Data sharing
 – Data security
 – Technical issue

• Users
 – Usability

• Support
 – Ownership
 – Funding
Type of Data

• What types of data are needed?
 – Who determines this?

• Raw vs. summarized

• Spatial dimensions
 – Nearshore, offshore, etc.

• Temporal dimensions

• Biological and environmental
Standardization

• Address project or jurisdiction differences in data
• Need to standardize data on units and scales
 – Transparency (don't worry who collected what)
 – Interoperability (all data is comparable)
 – Reduces need and time to harmonize data later
 – Lack of this causes long lag time to get data to management
• Process for submitting data
Data Gaps

- Missing data
- Spatial issues
- Data not in database
 - Because it's not contributed (no mandate)
 - Because of lack of funding
Data Sharing

- Rapid access to new data
- Lack of sharing protocols
 - Data integration (at what level)
 - Technical problems can impact sharing
- What do agencies choose to share
- Not all project data shared (champion or mandate)
Data Security

• Can data be secured?
• Current technical limitations of securing data (separate from sharing)

“Somebody broke into your computer, but it looks like the work of an inexperienced hacker.”
Technical Issues

- Handling large databases and associated issues
 - Availability
 - Backup
- Methods for updating
 - Use of web services
 - Other methods of updating
 - Synching data
Usability

- Need user access to the data
- What services will be available to access and visualize data
- How easy is it to use
Ownership

• Lack of mandates
 – Impacts other concerns such as sharing and data gaps

• Who will do it?
 – Needs a curator or champion
 – Long term vision and goals
 – Manage large teams
Funding

• Lack of funding impacts data collection

• Ongoing funding for future updates and maintenance

• Long-term viability of the database and/or web site
Examples of obstacles and ranking

<table>
<thead>
<tr>
<th>Item</th>
<th>Usability</th>
<th>Standardization</th>
<th>Funding</th>
<th>Security</th>
<th>Sharing</th>
<th>Tech</th>
<th>Type of data</th>
<th>DataGaps</th>
<th>Ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td>standardized data</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no data sharing protocols</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>science to management lag time</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lack of nearshore data and lower trophic data</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>all existing databases don't have web services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>end users in mind</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transparency</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>who curates data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

4 10 3 2 8 2 4 6 7
Examples of obstacles and ranking

<table>
<thead>
<tr>
<th>Item</th>
<th>Usability</th>
<th>Standardization</th>
<th>Funding</th>
<th>Security</th>
<th>Sharing</th>
<th>Tech</th>
<th>Type of data</th>
<th>DataGaps</th>
<th>Ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td>standardized data</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no data sharing protocols</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>science to management lag time</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lack of nearshore data and lower trophic data</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all existing databases don't have web services</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>end users in mind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>....etc....</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transparency</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>who curates data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

| | 4 | 10 | 3 | 2 | 8 | 2 | 4 | 6 | 7 |

- Transparency: X
- Who curates data: X
Results and more questions

• Most obstacles impact
 – Standardization, data sharing, ownership
• Data obstacles are about “what”
 – What data is collected and stored
 – What standards are used
 – What type of access is granted
• User obstacles are about “how”
 – How will users access the data
• Support obstacles are about “who”
 – Who will support this in the long term
 • And “how”?
Conclusions …. so far

• Big lakes need big data and that causes many challenges

• The most challenges identified are standardization, data sharing, and ownership

• More groups are working towards addressing these issues
 – But often not globally

• Needs political and economic “will” to support large integrated databases for the long run
Acknowledgements

• **East Africa**
 – Oliva Mkumbo, Lake Victoria Fisheries Organization
 – Anthony Munyaho, NFRR
 – Lewis Sitoki, Technical University of Kenya

• **Laurentian Great Lakes**
 – Catherine Riseng and Danielle Forsyth, GLAHF
 – Ted Treska, GLFC
 – Jennifer Read and Tad Slawecki, GLOS
 – Lizhiu Wang and Mark Burrows, IJC
 – Cynthia Hagley, Minnesota SeaGrant
 – Jim Bence, Michigan State University
 – Brent Lofgren and Heather Lucier, NOAA
 – Bill Taylor, Sea Grant Associate Director
 – David Allan and Lacey Mason, University of Michigan
 – Bo Bunnell, Kurt Newman, Norman G Grannemann and Scott Nelson, USGS

• **Project Researchers**
 – Rich Axler, George Host, Norm Will, and Terry Brown, University of Minnesota Duluth
 – Robert Hecky, University of Minnesota Duluth
Thank you!